深度观察:超快激光在材料科学中的应用
当下,超快激光器(如皮秒和飞秒激光器)已经在材料科学和工程领域得到了广泛的应用。而在放大系统方面取得的进展,则极大地推动了超快激光器领域的发展,为各个行业(特别是材料科学)带来了巨大的效益。
让人欣喜的是,科学家们已经可以充分利用超快激光器改变各种材料的特性。凭借其超高分辨率和短脉冲优势,超快激光器已成为精确助推特定应用的最佳选择。
(图片来源:NIST)
用于纳米材料结构的超快激光器
最近,研究和商业材料科学部门对利用超快激光器来产生纳米级参数这一领域产生了浓厚兴趣。全球工业界对小型化的关注,以及新型制造技术和工具(如超快激光器)的兴起,使制造出来的产品变得更加小巧、紧凑。
Nanophotonics杂志最近的一篇文章指出,工业上用于塑造各种材料(尤其是固体)的最先进方法,就是将高能量的超快激光以足够的强度引导到其表面,来刺激和去除材料。
除了直接烧蚀过程外,当表面被激发时,另一种利用超快激光的结构现象也出现了——这需要将表面形貌转变为具有亚波长周期性的规则图案,称为超快激光诱导的周期性表面结构。
而对于大块纳米结构至关重要的最初概念,则涉及所谓的“微爆炸”(microexplosion)。这个概念需要用超快激光刺激高密度等离子体,从而导致大量电子压力、冲击波和多毫巴水平的稀有元素的发展。纳米级结构是通过超快激光的精确聚焦来实现的。
超快激光制备纳米结构的应用领域广泛而多样。它们在光学、力学和生物学方面具有高性能的功能,尤其是当结构发生在光学波长范围内时——这可归因于与表面形貌、特定表面特征或特征尺寸有关的特性。
超快激光:焊接陶瓷的唯一有效方法
现代制造业严重依赖焊接,但通过传统方法实现可靠的陶瓷焊接仍然是一个无法实现的目标。同样优异的耐高温性能,使得工程陶瓷在许多具有挑战性的应用中不可或缺,但在连接陶瓷时也提出了巨大的挑战。
不过,最近发表在《科学》杂志上的一篇文章,则突出了超快激光焊接陶瓷的优点。超快激光器提供的精确能量传递在增材制造中起着关键作用,并且在陶瓷连接中具有高效的潜力。值得注意的是,已经有用超快激光器连接各种类型玻璃的成功实例。
一些用超快激光成功焊接的玻璃(如硼硅酸盐),与典型的工程陶瓷(如稳定的氧化锆和氧化铝)相比,具有较低的断裂韧性和抗热震性。能否在陶瓷中实现成功的超快激光连接,取决于激光在材料内部的聚焦能力,从而触发非线性和多光子吸收过程,导致局部吸收和熔化。
科学家们研发出了一种新型的超快脉冲激光焊接方法。该技术将光聚焦在陶瓷内部的界面上,形成一个光学相互作用体,刺激非线性吸收过程,导致陶瓷表面发生局部熔化而不是烧蚀。该研究的关键因素是线性和非线性光学特性之间的相互作用,以及激光能量与材料的有效耦合。
使用这种激光焊接方法生产的陶瓷组件,不仅保持了高真空条件,还表现出与金属-陶瓷扩散键相当的剪切强度。激光焊接现在可以将陶瓷集成到用于苛刻环境的设备中,以及集成到需要在可见到无线电频谱中具有透明度的光电子和电子产品的封装中。
超快激光在焊接透明陶瓷中发现了特殊的多功能性,因为它们可以通过材料聚焦。这允许在多个相互作用区域连接更复杂的几何形状,从而扩大潜在的焊接体积。